Backpaper - Computer Science 2 (2020-21) Time: 3 hours.

Attempt all questions, giving proper explanations. You may quote any result proved in class without proof.

- 1. How is the number -50.875 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [5 marks]
- 2. How many floating point numbers are there in [1,4]? [4 marks]
- 3. Let $g: [\frac{1}{2}, 1] \to [\frac{1}{2}, 1]$ be the function $g(x) = \frac{1}{1+x}$. Consider the sequence $x_{n+1} = g(x_n)$, starting with $x_0 = \frac{1}{2}$.
 - (a) Show that the sequence x_n converges. [3 marks]
 - (b) What does it converge to? [3 marks]
- 4. Consider solving the equation f(x) = 0.
 - (a) Describe Newton's method, Secant method and Bisection method. [5 marks]
 - (b) Explain using graphs the evolution of the iterates in the Newton method and the Secant method. [4 marks]
- 5. Use Gaussian elimination to solve

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 1 \\ 2 & 1 & 6 \end{bmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 [5 marks]

6. Use Gram-Schmidt orthogonalization process to find an orthonormal basis for the span of the following vectors in **R**⁴:

$$\{(1,2,1,1), (1,0,2,0), (1,3,1,1)\}.$$
 [5 marks]

7. Consider the real symmetric matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 3 & 4 & 5 \end{bmatrix}.$$

Implement *only* the first step of the classical Jacobi method to find the eigenvalues of the matrix, i.e. find the matrix $\mathbf{A}^{(1)}$ obtained from $\mathbf{A}^{(0)} = \mathbf{A}$. [5 marks]

- 8. Consider an infinitely differentiable function $f:[a,b] \to \mathbf{R}$.
 - (a) Write down the Newton-Cotes formula for $\int_a^b f(x)dx$ with 4 equally spaced points $a = x_0 < x_1 < x_2 < x_3 = b$. [4 marks]
 - (b) What is the *order* of the error in approximating the integral by the approximation? [2 marks]
- 9. Consider a function $z: [0,1] \to \mathbf{R}$ with z(0) = 1, and which solves

$$\frac{dz(t)}{dt} = f(t, z(t)), \quad 0 \le t \le 1.$$

Assume that the function f(t, x) is continuously differentiable with

$$\left|\frac{\partial f}{\partial x}\right| + \left|\frac{\partial f}{\partial t}\right| \le M$$

Now consider the sequence x_0, x_1, x_2 , given by $x_0 = 1$ and

$$x_{i+1} = x_i + \frac{1}{2} \cdot f\left(\frac{i}{2}, x_i\right), \quad i = 0, 1.$$

Give a bound on $|z(1) - x_2|$. [5 marks]