Backpaper - Computer Science 2 (2020-21)
 Time: 3 hours.
 Attempt all questions, giving proper explanations.
 You may quote any result proved in class without proof.

1. How is the number -50.875 stored as a floating point number in the computer ? Give the sign, mantissa and exponent. [5 marks]
2. How many floating point numbers are there in $[1,4]$? [4 marks]
3. Let $g:\left[\frac{1}{2}, 1\right] \rightarrow\left[\frac{1}{2}, 1\right]$ be the function $g(x)=\frac{1}{1+x}$. Consider the sequence $x_{n+1}=g\left(x_{n}\right)$, starting with $x_{0}=\frac{1}{2}$.
(a) Show that the sequence x_{n} converges. [3 marks]
(b) What does it converge to? [3 marks]
4. Consider solving the equation $f(x)=0$.
(a) Describe Newton's method, Secant method and Bisection method. [5 marks]
(b) Explain using graphs the evolution of the iterates in the Newton method and the Secant method. [4 marks]
5. Use Gaussian elimination to solve

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 4 & 1 \\
2 & 1 & 6
\end{array}\right] \mathbf{x}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad[5 \text { marks }]
$$

6. Use Gram-Schmidt orthogonalization process to find an orthonormal basis for the span of the following vectors in \mathbf{R}^{4} :

$$
\{(1,2,1,1),(1,0,2,0),(1,3,1,1)\} . \quad[5 \text { marks }]
$$

7. Consider the real symmetric matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 2 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

Implement only the first step of the classical Jacobi method to find the eigenvalues of the matrix, i.e. find the matrix $\mathbf{A}^{(1)}$ obtained from $\mathbf{A}^{(0)}=\mathbf{A} . \quad[5$ marks]
8. Consider an infinitely differentiable function $f:[a, b] \rightarrow \mathbf{R}$.
(a) Write down the Newton-Cotes formula for $\int_{a}^{b} f(x) d x$ with 4 equally spaced points $a=$ $x_{0}<x_{1}<x_{2}<x_{3}=b$. [4 marks]
(b) What is the order of the error in approximating the integral by the approximation? [2 marks]
9. Consider a function $z:[0,1] \rightarrow \mathbf{R}$ with $z(0)=1$, and which solves

$$
\frac{d z(t)}{d t}=f(t, z(t)), \quad 0 \leq t \leq 1
$$

Assume that the function $f(t, x)$ is continuously differentiable with

$$
\left|\frac{\partial f}{\partial x}\right|+\left|\frac{\partial f}{\partial t}\right| \leq M
$$

Now consider the sequence x_{0}, x_{1}, x_{2}, given by $x_{0}=1$ and

$$
x_{i+1}=x_{i}+\frac{1}{2} \cdot f\left(\frac{i}{2}, x_{i}\right), \quad i=0,1
$$

Give a bound on $\left|z(1)-x_{2}\right|$. [5 marks]

